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ABSTRACT:

Cluster analysis or clustering is one of the most fundamental
and essential data mining tasks with broad applications. It aims
at finding a structure in a set of unlabeled data, producing
clusters so that objects in one cluster are similar in some way
and different from objects in other clusters. Basic elements of
clustering include proximity measure between objects, cost
function, algorithm, and cluster validation. There is a close
relationship between these elements. Although there has been
extensive research on clustering methods and their applications,
less attention has been paid to the relationships between the
basic elements. This thesis first provides an overview of the
basic elements of cluster analysis. It then focuses on cluster
validity as four publications are devoted to this element.

Chapter 1 sketches the clustering procedure and provides
definitions of basic components. Chapter 2 reviews popular
proximity measures for different types of data. A novel
similarity measure for comparing two groups of words is
introduced which is used in the clustering of items characterized
by a set of keywords. Chapter 3 presents basic clustering
algorithms and Chapter 4 analyzes cost functions. A clustering
algorithm is expected to optimize a given cost function.
However, in many cases the cost function is unknown and
hidden with the algorithm, making the evaluation of clustering
results and analysis of the algorithms difficult.

Numerous clustering algorithms have been developed for
different application fields. Different algorithms, or even one
algorithm with different parameters, can give different results
for the same data set. The best clustering can be selected based
on the cost function if the number of clusters is fixed and the
cost function has been defined, otherwise cluster validity
indices, internal and external, are used. Chapter 5 reviews
several popular internal indices. We study the problem of
determining the number of clusters in a data set using these
indices, and we propose a new internal index for finding the
number of clusters in hierarchical clustering of words. External



validity indices are studied in Chapter 6 and two new external
indices, centroid index and pair sets index, are introduced. We
present a novel experimental setup based on generated
partitions to evaluate external indices. We also study whether
external indices are applicable to the problem of determining
the number of clusters. The conclusion is made that external
indices can be used for the problem, but only in theory and in
controlled environments where the type of data is well known
and no surprises appear. In practice, this is rarely the case.

AMS classification: 62H30, 91C20
Universal Decimal Classification: 004.052.42, 303.722.4, 519.237.8
Library of Congress Subject Headings: Data mining; cluster analysis;
algorithms
Yleinen suomalainen asiasanasto: tiedonlouhinta; klusterianalyysi;
validointi; algoritmit
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1 Introduction

Clustering is the division of data objects into groups or clusters
such that objects in the same group are more similar than objects
in different groups. Clustering plays an important role in data
mining applications such as scientific data exploration,
information retrieval and text mining, spatial database
applications, Web analysis, customer relationship management
(CRM), marketing, medical diagnostics, computational biology,
and visualization [1].

Clustering method
Proximity measure  [P5]
Clustering criterion
Clustering algorithm

Data Clusters

Cluster validation
Internal index [P4]
External index [P1][P2]

Results
interpretation

Knowledge

Clustering tendency?
How many clusters?

[P3][P4]

Figure 1.1: Basic components of cluster analysis

Figure 1.1 shows the components of cluster analysis. Data is
represented in terms of features that form d-dimensional feature
vectors. Feature extraction and selection from original entities
must be performed so that the features provide as much
distinction as possible between different entities concerning the
task of interest. This is performed by an expert in the field. For
example, the extraction of features from a speech signal to



distinguish between different people is performed by an expert
in the speech processing field [2]. Moreover, extracted features
may need preprocessing, such as dimensionality reduction and
normalization of the features, so that all features have the same
scale and contribute equally. Next, the assumption is made that
the features have been already extracted and the required
preprocessing has been performed. The basic components of
cluster analysis are the following:

1. Proximity measure
2. Clustering criterion
3. Clustering algorithm
4. Cluster validation
5. Results interpretation

Similarity or dissimilarity (distance) measure between two data
objects is a basic requirement for clustering, and it is chosen
based on the problem at hand. For example, suppose that the
problem concerns a time analysis of travelling in a city. Using
Euclidean distance between two places is not accurate because
one cannot typically travel through buildings. We study several
proximity measures in Chapter 2 including a new similarity
between two groups of words.

Clustering criterion determines the type of clusters that are
expected. The criterion is expressed as a cost (or objective)
function, or some other rules. For example, for the same data set,
one criterion leads to hyperspherical clusters, whereas another
leads to elongated clusters [2]. The cost function is hidden in
many existing clustering approaches, however, the function can
be determined through further analysis. We study several cost
functions in Chapter 4.

Clustering algorithm is the procedure that groups data in order
to optimize the clustering criterion. Numerous clustering
algorithms have been developed for different fields. Good
algorithms find a clustering close to the optimum efficiently. In
Chapter 3, we review basic clustering algorithms.

Different clustering algorithms, and even one algorithm with
different parameters and initial assumptions, can produce
different clusterings for the same data set. For a fixed number of
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clusters, different results can be evaluated based on the
clustering criterion if available. In a general case, cluster
validation techniques are used to evaluate the results of a
clustering algorithm [3], and decide which clustering best fits
the data. Cluster validation is performed using cluster validity
indices which are divided into two groups: internal index and
external index [P2].

Internal indices measure the quality of a clustering solution
using only the underlying data [4], [5]. External indices compare
two clustering solutions of the same dataset. They might
compare a clustering with ground truth to evaluate a clustering
algorithm. Both internal and external indices are used for
determining the number of clusters. We study cluster validity
indices in Chapters 5 and 6.

The goal of clustering is to provide meaningful insights to the
data in order to develop a better understanding of the data.
Therefore, in many cases, the expert in the application field is
encouraged to interpret the resulting partitions and integrate the
results with other experimental evidence and analysis in order
to draw the right conclusions.
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2 Proximity measures

A data object represents an entity and is described by attributes
or  features  with  a  certain  type,  such  as  a  number  or  a  word.
Attributes are often represented by a multidimensional vector
[6]. The type of attributes is one of the factors that determines
how to measure the similarity between two objects. Other
factors are related to the problem at hand. For example, the
similarity of two words for some applications is measured by
considering the letters in the words. However, for other
applications,  this  does  not  provide  good  results,  and  the
semantic similarity between two words is required.

A dissimilarity or similarity measure can be effective without
being a metric [7], but sometimes metric requirements are
desirable. A dissimilarity metric must satisfy the following
conditions [7]:

Non-negativity: D(xi, xj)  0
Symmetry: D(xi, xj) = D(xj, xi)
Reflexivity: D(xi, xj) = 0 if and only if xi=xj.
Triangular inequality: D(xi, xj)+ D(xj, xk  D(xi, xk)

A similarity metric satisfies the following:

Limited range: S(xi, xj)  S0

Symmetry: S(xi, xj) = S(xj, xi)
Reflexivity: S(xi, xj) = S0 if and only if xi=xj.
Triangular inequality:

S(xi, xj)×S(xj, xk) S(xi, xk)×(S(xi, xj)+S(xj, xk))

2.1 ELEMENTARY DATA TYPES

Numeric: Numeric data are classified in two groups: interval
and ratio. The interval between each consecutive point of
measurement is equal to every other for interval data, such as
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time and temperature. They do not have a meaningful zero
point. For example, 00.00 am is not the absence of time. The
difference between 10:15 and 10:30 has exactly the same value as
the difference between 8:00 and 8:15. In ratio data,  such  as  the
number of people in line, a value of zero indicates an absence of
whatever is measured. Another classification for numeric data
includes discrete data and continuous data.
Categorical: Every object belongs to one of a limited number of
possible categories, states, or names. Categorical data are
classified into two groups: nominal and ordinal. Categories in
nominal data such as marriage status (married, widow, single)
are not ordered. Binary data can be considered as nominal data
with only two states: 0 and 1. On the other hand, categories in
ordinal data, such as degree of pain (severe, moderate, mild,
none) are ordered.

2.2 NUMERICAL DISTANCES

Euclidean distance

Euclidean  distance  is  the  most  common  metric  that  is  used  for
numerical vector objects. For two d dimensional objects xi and xj,
Euclidean distance is calculated as follows:

2/12

1

d

l

l
j

l
i xxd (2.1)

Centroid-based clustering algorithms, such as K-means, that
use Euclidean distance tend to provide hyperspherical clusters
[6].

Euclidean  distance  is  a  special  case  (p=2) of a more general
metric called Minkowski distance:
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l

l
j

l
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(2.2)

Another popular and special case of Minkowski distance is
Manhattan or city-block distance where p=1, see Figure 2.1:
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A clustering algorithm that uses Manhattan distance tends to
build hyper-rectangular clusters [6].

2D example
x1 = (2,8)
x2 = (6,3)

Euclidean distance

Manhattan distance

0 5 10

5

10

4

5

X1 = (2,8)

X2 = (6,3)

413862)2,1( 22d

93862)2,1(d

Figure 2.1: Euclidean and Manhattan distances
(http://cs.uef.fi/pages/franti/cluster/notes.html)

Mahalonobis distance

All the objects in a cluster affect on Mahalonobis distance
between two objects by applying within group covariance
matrix S. Clustering algorithms that use this distance tend to
build hyper-ellipsoidal clusters.

)()( 1
ji

T
ji xxSxxd (2.4)

The within group covariance matrix for uncorrelated features
becomes an identity matrix and, therefore, Mahalonobis
distance simplifies to Euclidean distance [6].
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2.3 NON-NUMERICAL DISTANCES

Cosine similarity

Cosine  similarity  is  the  most  popular  metric  used  in  document
clustering and is based on the angle between the vectors of two
objects.

ji

ji

XX
XX

s (2.5)

The more similar two objects are, the more parallel they are
in the feature space, and the greater the cosine value. The Cosine
value does not provide information on the magnitude of the
difference.

Hamming distance

Hamming distance is used for comparing categorical data and
strings of equal length. It counts the number of different
elements in two objects [8]:
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Following are some examples:

Cables, Tablet d=2
10110001, 11100101 d=3
(male, blond, blue, A), (female, blond, brown, A) d=2

Gower similarity is a variant of Hamming distance, which is
normalized by the number of attributes and has been extended
for mixed categorical and numerical data [9]. The simple form of
Gower similarity for categorical data can be written as follows:
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Edit distance

Levenshtein or edit distance measures the dissimilarity of
two strings (e.g., words) by counting the minimum number of
insertions, deletions, and substitutions required to transform
one string to the other. Several variants exist. For example,
longest common subsequence (LCS) allows only insertions and
deletions [10]. We describe the edit distance by an example: the
dissimilarity between kitten and sitting. Transforming kitten into
sitting can be performed in three steps as follows:

Substitute s with k: sitten
Substitute e with i:  sittin
Insert g at the end:  sitting

Therefore, the edit distance between the two words is 3.

2.4 SEMANTIC SIMILARITY BETWEEN WORDS

Semantic similarity between two words is measured according
to their meaning rather than their syntactical representation.
Measures for the semantic similarity of  words  can  be
categorized as corpus-based, search engine-based, knowledge-based
and hybrid. Corpus-based measures such as point-wise mutual
information (PMI)  [11]  and latent semantic analysis (LSA) [11]
define the similarity based on large corpora and term co-
occurrence. The number of occurrences and co-occurrences of
two  words  in  a  large  number  of  documents  is  used  to
approximate their similarity. A high similarity is achieved when
the number of co-occurrences is only slightly lower than the
number of occurrences of each word. Search engine-based
measures such as Google distance are  based  on  web  counts  and
snippets from the results of a search engine [12] [13] [14]. Flickr
distance first searches for two target words separately through
image tags and then uses image content to calculate the distance
between two words [15].
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Knowledge-based measures use lexical databases such as
WordNet [16] or CYC [16]. These databases can be considered
computational formats of large amounts of human knowledge.
The knowledge extraction process is time consuming and the
database depends on human judgment. Moreover, it does not
scale easily to new words, fields, and languages [17] [18].

WordNet is a taxonomy that requires a procedure to derive a
similarity score between words. Despite its limitations, it has
been successively used for clustering [P4]. Figure 2.2 illustrates a
small part of the WordNet hierarchy where mammal is the least
subsummer of  wolf  and  hunting  dog. Depth of  a  word  is  the
number  of  links  between it  and the  root  word  in  WordNet.  As
an example, the Wu and Palmer measure [19] is defined as
follows:

)()(
)),((2),(

21

21
21 wdepthwdepth

wwLCSdepthwwS (2.8)

where LCS is the least common subsummer of the words w1 and
w2.

animal

horse

amphibianreptilemammalfish

dachshund

hunting dogstallionmare

cat

terrier

wolf dog

12

89.0
1413
122

wupS13

14

Figure 2.2: Part of WordNet taxonomy

Jiang-Contrath [16] is a hybrid of corpus-based and
knowledge-based methods in that it extracts the information
content of two words and their least subsumer in a corpus.
Methods based on Wikipedia or similar websites are also hybrid
in the sense that they use organized corpora with links between
documents [20].
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2.5 SEMANTIC SIMILARITY BETWEEN GROUPS OF WORDS

The semantic clustering of objects such as documents, web sites,
and movies based on their keywords requires a similarity
measure between two sets of keywords. Existing measures
include minimum, maximum, and average similarity. Consider
the bipartite graph in Figure 2.3 where the similarity between
every two words is written on their corresponding link.
Minimum and maximum measures are based on the links with
minimum (0.20) and maximum (0.84) values. The average
measure considers all the links and calculates the average value
(0.57). These measures have fundamental limitations in
providing a reasonable similarity value between two sets of
words  [P5]. For example, the minimum and average measures
give a lower value than 1.00 for two sets with the same words.
Maximum measure gives 1.00 for two different sets which have
only one common word.

restaurant

cafeteria holiday

sauna

cafe cottage

0.80

0.70
0.22
0.84
0.67
0.20

0.67
0.21
0.80

max

min

Hyve Sampon lomamökit

Average = 0.57

Figure 2.3: Minimum and maximum similarities between two
location-based services is derived by considering two keywords
with minimum and maximum similarities

In  [P5], we present a new measure based on matching the
words of two groups assuming that a similarity measure
between two individual words is available. The proposed
matching similarity measure is based on a greedy pairing
algorithm which first finds the two most similar words across
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the sets, and then iteratively matches next similar words.
Finally,  the  remaining  non-paired  keywords  (of  the  object  with
more keywords) are just matched with the most similar words
in the other object. Figure 2.4 illustrates the matching process
between two sample objects.

restaurant

gym gym

restaurant

skiing spa

1.00

1.00

0.67

Vesileppis Tahko Spa

dance

spa
1.00

0.30

S = 0.79

Figure 2.4: Matching between the words of two objects.

Consider two objects with N1 and N2 keywords so that N1>N2.
We define normalized similarity between the two objects as
follows:

1

1
)(

1

),(

N

wwS
S

N

i
ipi (2.9)

where S(wi,wj) measures the similarity between two words, and
p(i) provides the matched word for wi in the other object. The
proposed measure eliminates the disadvantages of minimum,
maximum, and average similarity measures.
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3 Clustering algorithms

3.1 K-MEANS

K-means is a partitional clustering algorithm that aims at
minimizing the total squared error (TSE). To cluster N data
objects into K clusters, K centroids are initially selected in some
way, for example, through randomly chosen data objects. Two
steps of the algorithm are then iteratively performed: assignment
and update, for a fixed number of iterations or until convergence.
In the first step, objects are assigned to their nearest centroid. In
the second step, new centroids are calculated by averaging the
objects in each cluster [21]. Time complexity is O(IKN), where I
is the number of iterations [22].

K-means suffers from several drawbacks [6]. The main
drawback  is  that  the  result  is  highly  dependent  on  the  initial
selection of centroids. Different centroids lead to different local
optimums that may be very far away from the global one.
Consequently, many variants of K-means have been proposed to
tackle the obstacles. For example, several techniques such as K-
means++ [23] have been proposed for the better selection of
initial centroids. Iterative methods such as genetic algorithm [24]
and random swap [25] improve results by modifying the
centroids.

3.2 RANDOM SWAP

The randomized local search or random swap algorithm [25] selects
one of the centroids in a given clustering randomly and moves it
to another location. K-means is then applied to fine tune the
clustering result. The process is repeated for a given number of
iterations chosen as an input parameter. In each iteration, the
new resulting clustering is accepted if it improves TSE, and is
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then used for the next iteration. With large number of iterations,
typically 5,000, the method usually provides good results. This
trial-and-error approach is simple to implement and very
effective in practice.

3.3 AGGLOMERATIVE CLUSTERING

Agglomerative clustering is a bottom-up approach in which
each object is initially considered as its own cluster. Two clusters
are then iteratively merged based on a criterion [26]. Several
criteria have been proposed for selecting the next two clusters to
be merged such as single-linkage, average-linkage, complete-linkage,
centroid-linkage, and Ward’s method [27].

Classical agglomerative clustering using any of these criteria
is not appropriate for large-scale data sets due to the quadratic
computational complexities in both execution time and storing
space. The time complexity of the basic agglomerative clustering
is O(N3). The fast algorithm introduced in [28] employs a nearest
neighbor table that only uses O(N)  memory  and  reduces  the
time complexity to O( N2), where <<N. Even this algorithm can
still be too slow for real-time applications. In [26], an algorithm
based on k-nearest neighbor graph is proposed to improve the
speed  close  to  O(NlogN) with a slight decrease in accuracy.
However, graph creation is the bottleneck of the algorithm and
should be solved. Otherwise, this step dominates the time
complexity. Agglomerative clustering is sensitive to noise and
outliers.  It  does  not  consider  an  object  after  it  is  assigned  to  a
cluster, and therefore, previous misclassifications cannot be
corrected afterwards [6].

3.4 DBSCAN

Density Based Spatial Clustering of Applications with Noise
(DBSCAN) is a density-based clustering algorithm which aims
at finding arbitrary shaped clusters and eliminate noise. It
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creates clusters from the points whose neighborhood within a
given radius (eps) contains a minimum number (minPt) of other
points [29]. Using every such a point, the algorithm grows a
cluster by joining other points that are close to the cluster. The
results are independent of the order of processing the objects.

Three types of points are defined, see Figure 3.1. Core points
contain at least minPt (5  in  this  example)  points  in  their eps
neighborhood. Border points  do  not  contain  enough  points  in
their neighborhood but they fall in the neighborhood of some
core points. Other points are considered noise or outliers.

A point xi is directly density reachable from xj if xj is  a  core
point and xi is in its eps neighborhood. A point xi is defined
density reachable from a core point xj if a chain of points from xj

to xi exist so that each point is directly density reachable from
the previous point. The concept of density connectivity is also
defined to describe the relations between the border points that
belong to the same cluster but are not density reachable from
each other. Two points are density connected if they are density
reachable  from a  common core  point.  A  cluster  is  built  from a
core point and its neighboring objects in eps distance, and it
grows using the concepts of density-reachable and density-
connected. Two conditions should be held:
1. If xi is in cluster C, and xj is density reachable from xi, then xj

also belongs to cluster C
2. If xi and xj belongs to cluster C, xi and xj are density connected

The results are highly dependent on the input parameters eps
and minPt. Finding appropriate parameters for a data set is not
trivial, and the problem becomes more complicated when
different parts of data require different parameters [1]. Several
methods such as Ordering Points To Identify the Clustering
Structure (OPTICS) [30] have been proposed to address this
problem. Time complexity of the original DBSCAN is O(N2) but
efforts [31] [32] have been made to reduce it close to O(N).
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eps

Border

Core

Noise

Cluster 1

Cluster 2

Outlier

Figure  3.1:  Three  types  of  points  are  defined  in  the  DBSCAN
algorithm; two clusters are identified in this example, where
eps=1 and minPt=5.
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4 Cost functions

An objective function or cost function measures the error in a
clustering. The optimal clustering is achieved by minimizing the
cost function. However, not all clustering algorithms are based
on minimizing a cost function. Some include the cost function
hidden within the algorithm. This makes the evaluation of
clustering results and analysis of the algorithms difficult. For
example, DBSCAN produces a clustering heuristically with two
given input parameters. Different parameter values result in
different clusterings. No objective function has been reported to
decide  which  clustering  is  the  best.  There  is  however  a  cost
function but it may be hidden. This chapter addresses several
cost functions that are used in existing clustering methods.

4.1 TOTAL SQUARED ERROR (TSE)

Total squared error (TSE) is the objective function for most
centroid-based clustering algorithms such as k-means, which is
the sum of variances in individual clusters. Given data inputs xi,
i=1..N, centroids cj, j=1..k, and labels of data li, i=1..N, li=1..k, TSE
is defined as [6]:

N

i
li i

cxTSE
1

2
(4.1)

Mean squared error (MSE) equals normalized TSE by the
total number of objects. There is no difference between
minimizing MSE and TSE.

N

i
li i

cx
N

MSE
1

21
(4.2)

For a fixed number of clusters k, the best clustering is the one
that provides minimum TSE. However, when the number of
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clusters varies, the clustering that best fits the data cannot be
concluded merely based on TSE because increasing k will
always provide a smaller TSE. This would lead all points into
their own clusters.

The TSE in equation (4.1) can be used only for the data that
the centroid of a cluster can be calculated by averaging the
objects in the cluster.

4.2 ALL PAIRWISE DISTANCES (APD)

This cost function considers all pairwise distances (APD)
between the objects in a cluster. The centroid is not needed.
Therefore, APD can be used for any type of data if the distance
between every two objects is available. The criterion is defined
as:

lji Cxx
ji xxAPD

,

2

(4.3)

It can be shown for Euclidean distance that [33]:

kk

k

TSEnTSEnTSEn
APDAPDAPDAPD

...
...

2211

21 (4.4)

where APDi, ni,  and  TSEi are the sum of all pairwise distances,
the number of objects, and the total squared error in cluster i,
respectively.  It  is  shown  in  [34]  that  applying  all  pairwise
distances as the clustering criterion leads to more balanced
clusters than TSE.

TSE can be calculated for non-numeric data without having
centroids  as  follows.  The  sum  of  all  pairwise  distances  is
calculated for each cluster i,  and  the  result  is  divided  by  the
number of objects in the cluster giving the total squared error
TSEi. Summing up the total squared errors of all clusters results
in TSE.
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4.3 SPANNING TREE (ST)

The cost function is the sum of the costs of spanning trees (ST) of
the individual clusters. The optimal solution for the cost
function is achieved from the minimum spanning tree (MST) of
the data objects. Given the MST in Figure 4.1 (left), we can get
three clusters by cutting the two largest links. This cost function
is suitable for detecting well separated arbitrary shaped clusters.
However, it fails in real life data sets with noise, see Figure 4.1
(right).

Noise

Figure 4.1: Spanning trees of clusters are used to derive the cost
function.

4.4 K-NEAREST NEIGHBOR CONNECTIVITY

This cost function measures connectedness by counting the
number of k nearest neighbors of each object that are placed in
different cluster than the object [35].  It is calculated as:

otherwise

Pxif
jxxCONNK lj

jx
Px xnnx

jx i

li ij

i

,0

,1
)()(

)(
(4.5)

where xj is the jth nearest neighbor of xi, and Pl represents the
cluster that xi belongs to. The number of neighbors k is an input
parameter. The cost function should be minimized. The optimal
case  is  when  all k nearest neighbors of an object locate in the
same cluster of the object. The impact of the first neighbor on the
cost function is the highest, and it decreases for the next
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neighbors by the factor 1/j, j=1..k. The 5 nearest neighbors of one
object  is  depicted in Figure 4.2,  from which the fourth and fifth
neighbors are from the other cluster. The error is calculated as
1/4+1/5=0.45. Summing up the errors for all the points gives the
value of cost function.

Figure 4.2: Five nearest neighbors are considered to calculate the
cost function. For the selected point, two neighbors are located
in the other cluster.

4.5 LINKAGE CRITERIA

In agglomerative clustering, a global cost function has not been
defined in the literature. Instead, a merge cost is defined which
aims at optimizing the clustering locally. Several criteria such as
single-link and complete-link are used for merging two clusters,
see Figure 4.3. We reveal the global cost function through
analyzing the local ones.

Single-link criterion is the distance between the two most
similar objects in two clusters. The goal of single-link is to find
clusters with the highest connectivity. Two objects in a cluster
can be far away but connected through other points in the
cluster. The cost function is the sum of the costs of spanning
trees of individual clusters. Single-link can be related to
Kruskal’s  algorithm  which  is  known  to  be  optimal  for  MST.  It
can be shown that k clusters correspond to the MST forest of k
trees.

Complete-link criterion is the distance between the two most
dissimilar objects in two clusters. Complete-link aims at finding
homogenous clusters so that the maximum distance between the
objects in each cluster is minimized. Once two new clusters are
merged, the resulting distance is the maximum distance over all
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clusters which indicates the worst cluster. Given a clustering,
the largest pairwise distance in each cluster is determined. The
overall cost function is the maximum of the largest distances
from all clusters. We call the cost function MAX-MAX.
Agglomerative clustering using the complete-link criterion does
not guarantee the optimal solution for the MAX-MAX cost, see
Figure 4.4.

Average-link criterion selects the two clusters that the
average distance between all pairs of objects in them is
minimum. The corresponding cost function is therefore all
pairwise distances.

Centroid-link criterion is the distance between the centroids
of two clusters. It can be used only for data in which the
centroids of clusters can be derived.

Ward’s criterion selects the clusters to be merged that result
in a minimum increase in TSE [36]. The increase of TSE resulted
from merging two clusters i and j is calculated as:

2

ji
ji

ji cc
nn

nn
TSE (4.6)

where ci and cj are the centroids, and ni and nj are the number of
objects in the two clusters.

Single-link Complete-link

Average-link

Figure 4.3: Distance between two clusters
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Complete link Random swap

1

2

3

4

5

6

78 910

Figure 4.4: Complete link agglomerative clustering (left) results
in a higher value of  the cost  function MAX-MAX comparing to
the random swap algorithm (right). The numbers show the
order of merges.



Dissertation in Forestry and Natural Sciences No 225   23

5 Internal validity indices

Clustering is defined as an optimization problem in which the
quality is evaluated directly from the optimization criterion.
Straightforward criterion works with a fixed number of clusters
k. Internal validity indices extend this to variable k.

5.1 INTERNAL INDICES

Internal indices use a clustering and the underlying data set to
assess the quality of the clustering [37]. They are designed based
on the goal of clustering, placing similar objects in the same
cluster and dissimilar objects in different clusters. Accordingly,
two concepts are defined: intra-cluster similarity and inter-
cluster similarity. Intra-cluster similarity (e.g. compactness,
connectedness, and homogeneity) measures the similarity of the
objects within a cluster, and inter-cluster similarity or separation
measures how distant individual clusters (or their objects) are.

Compactness is suitable for the clustering algorithms that
tend to provide spherical clusters. Examples include centroid-
based clustering algorithms such as K-means, and average-link
agglomerative clustering. Connectedness is suitable for density-
based algorithms such as DBSCAN [37]. Several variants of
compactness and connectedness exist. The average of pairwise
intra-cluster distances and the average of centroid-based
similarities are representatives of compactness. A popular
measure of connectedness is k-nearest neighbor connectivity
which counts violations of nearest neighbor relationships [37].

A good clustering of a data set is expected to provide well
separated clusters [38]. Separation is defined in different ways.
Three common methods are the distance between the closest
objects, the most distant objects, and the centers of two clusters
[39].
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Several internal indices have been proposed that combine
compactness and separation [3] [37] [39] [40] [41] [42]. Popular
indices are listed in Table 5.1. Most of the indices have been
invented for determining the number of clusters that fits the
data.

Table 5.1: Selection of popular internal validity indices
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5.2 SUM OF SQUARES WITHIN CLUSTERS (SSW)

Sum of squares within clusters (SSW) [43] or within cluster
variance is equal to the TSE, see Figure 5.1.

The index can only be used for numerical data because it
requires centroids of clusters. SSW measures the compactness of
clusters, and is suitable for centroid-based clustering, where
hyperspherical clusters are desired. The value of SSW always
decreases as the number of clusters increases.

Figure 5.1: Illustration of the sum of squares within clusters
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5.3 SUM OF SQUARES BETWEEN CLUSTERS (SSB)

The sum of squares between clusters (SSB) [43] measures the degree
of separation between clusters by calculating between cluster
variance.

The separation between clusters is determined according to
the distances of centroids to the mean vector of all objects, see
Figure 5.2. The factor ni in the formula presented in Table 5.1
indicates that a cluster with a bigger size has more impact on the
index. This criterion requires the centroids or prototypes of
clusters and all data. Increasing the number of clusters usually
results in a larger SSB value.

x

Figure 5.2: Illustration of the sum of squares between clusters.

5.4 CALINSKI-HARABASZ INDEX (CH)

The Calinski-Harabasz (CH) [44] index uses the ratio of
separation and compactness to provide the best possible
separation and compactness simultaneously. A maximum of the
index value indicates the best clustering with a high separation
and low error in compactness. A higher number of clusters for a
data set provides higher SSB and lower SSW. However, the
decrease in SSW is more than that of SSB. Therefore, the penalty
factor  (K-1) prevents the conclusion of a higher number of
clusters than the correct one. The term N-K is considered to
support cases in which the number of clusters is comparable to
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the total number of objects. However, usually N is much higher
than K, and the term can be shortened to N.

This index, similar to SSB and SSW, is limited to numerical
data with hyperspherical clusters.

5.5 SILHOUETTE COEFFICIENT (SC)

Silhouette coefficient (SC) [49] measures how well each object is
placed in its cluster, and separated from the objects in other
clusters. The average dissimilarity of each object xi with all
objects in the same cluster is calculated as a(xi), which indicates
how well xi is assigned to its cluster. Lowest average
dissimilarity of xi to other clusters is calculated as b(xi).

SC=
N

p ii

ii

xbxa
xaxb

N 1 ))(),(max(
)()(1 (5.1)

The dissimilarity between two objects is sufficient for
calculating the index. Therefore, SC can be used for any type of
data, and any clustering structure.

5.6 DUNN FAMILY OF INDICES

Dunn index [47] is defined as follows:

)(max

),(minmin

1

11

k

K

k

ji

K

ij

K

i

cdiam

ccd
DI

(5.2)

where d(ci,cj) is the dissimilarity between two clusters and
diam(ck)=max d(xi, xj) is the diameter of cluster ck, where xi, xj ck.
The numerator of the equation is a measure of separation, the
distance between the two closest clusters. The diameter of a
cluster shows the dispersion (opposite to compactness) of the
cluster. The cluster with the maximum diameter is considered.
A larger value of the index indicates a better clustering of a data
set with more compact and well separated clusters.
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Dunn index is sensitive to noise, and has a high time
complexity [52]. Three related indices have been introduced in
[52] based on Dunn index to alleviate these limitations. They are
called Dunn-like indices.

5.7 SOLVING NUMBER OF CLUSTERS

To determine the number of clusters, clustering is applied to the
data set for a range of k [Kmin, Kmax], and the validity index values
are calculated. The best number of clusters k* is selected
according to the extremum of the validity index.

Figure 5.3 shows data set S1 with 15 clusters and the
normalized values of SSW and SSB. Random swap clustering
algorithm [25] is applied when the number of clusters is varied
in the range [2, 25].

Figure 5.3: Data set S1 (left), and the measured values of SSW
and SSB (right)

The error in compactness measured by SSW decreases, and
the separation measured by SSB increases, as the number of
clusters increases. However, the decreasing and increasing rates
significantly reduce after k=15, a knee point that indicates the
correct number of clusters. Although several methods for
detecting the knee point have been summarized in [43] but none
of  them  work  in  all  cases.  It  would  be  easier  to  use  a  validity
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index that provides a clear minimum or maximum value at the
correct number of clusters. For example, CH [44] provides a
maximum by considering both SSW and SSB, and also a penalty
factor on the number of clusters k, see Figure 5.4.

Figure 5.4: Determining the number of clusters for the data set S1

using CH index

Most of the existing internal indices require the prototypes of
the clusters but these are not always easy to calculate, such as in
a clustering of words based on their semantic similarity. In [P4],
we introduce a new internal index to be used for determining
the number of clusters in a hierarchical clustering of words.

To find out which level of the hierarchy provides the best
categorization of the data, an internal index needs to evaluate
the compactness within clusters and separation between clusters
at each level. We define the proposed index as the ratio of
compactness and separation:
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where wi is the ith keyword, ct is the cluster t at the level of
hierarchy where the number of clusters is k, JC is the Jiang &
Conrath function that measures the distance of two words, I1 is
the number of clusters with only one word, and N is the total
number of words.

Compactness measures the maximum pairwise distance in
each cluster, and takes the maximum value among all clusters.
Compactness for clusters with a single object cannot be
considered zero because the clustering in which each object is in
its own cluster would then result in the best compactness. To
avoid this, we add the factor I1/N to the compactness equation.
In the beginning of clustering, when each object belongs to its
own cluster, the compactness equals 1 because I1=N.

Separation measures the minimum distance between the
words of every two clusters and sums up the values.
Normalization by k(k-1)  provides  a  value  in  the  same  scale  as
compactness. A good clustering provides a small distance value
for compactness and a large distance value for separation.
Therefore, the level of the hierarchy with k clusters that results
in the minimum SC is selected as the best level.
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6 External validity indices

External validity indices measure how well the results of a
clustering match the ground truth (if available) or another
clustering [53] [P1]. They are the criteria for testing and
evaluating clustering results and for the analysis of clustering
tendency in a data set. Some authors define an external index for
comparing a clustering with ground truth [4] [37] and define
relative index for comparing two clusterings of a data set [3] [5].
However, many others classify both as external index. External
indices have been used in ensemble clustering [40] [54] [55] [56],
genetic algorithms [57], and evaluating the stability of k-means
[55].

In this section, we first introduce several properties for a
validity index based on which its performance can be evaluated.
We then provide a review of the external indices in three
categories: pair-counting, information theoretic, and set-matching,
see Table 6.1, [P2]. Finally, we describe our new setup of
experiments for evaluating the external indices.

Given two partitions P={P1, P2,…,PK} of K clusters and G={G1,
G2,…,GK’} of K’ clusters, an external validity index measures the
similarity between P and G. Most external indices are derived
using the values in the contingency table of P and G, see Table 6.2.
The table is a matrix where nij is the number of objects that are
both in clusters Pi and Gj: nij=|Pi Gj|, ni and mj are the size of
clusters Pi and Gj respectively.

Table 6.1: External validity indices

Pair-counting measures
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Table 6.2: Contingency table for two partitions P and G
G1 G2 … Gj … GK’

P1 n11 n12 … n1j … n1K’ n1

P2 n21 n22 … n2j … n2K’ n2

… … … … … … … …
Pi ni1 ni2 … nij … niK’ ni

… … … … … … … …
PK nK1 nK2 … nKj … nKK’ nK

m1 m2 … mj … mK’ N

6.1 DESIRED PROPERTIES

An external validity index needs to satisfy several properties to
be consistent and comparable for different data sets and
clustering structures.

Normalization transforms the index within a fixed range, for
example [0, 1], which makes comparison easier for data sets of a
different size and structure. Normalization is the most
commonly agreed property in the clustering community [66],
and is usually performed as:

)min()max(
)min(),(

dd

ddn

II
IIGPI

d (6.1)

where min(Id) and max(Id) are the minimum and maximum
values of Id.

Index values are expected to be constant when different
random clusterings are compared with a ground truth [59]. A
random partition is created by selecting a random number of
clusters of random size. The similarity between the random
partition and the ground truth originates merely by chance.
Take an example of Rand index: the value of the index for two
random partitions is not a constant, and is in a narrower range
of [0.5, 1] instead of [0, 1]. By correction for chance or adjustment,
the expected value of an index E(I) is transformed to zero
(similarity) or one (dissimilarity) [59] [67]. Adjustment and
normalization can be performed jointly as follows:
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where the minimum (similarity) or maximum (dissimilarity) is
replaced by the expected value E(I).

Metric property has  also  been  considered.  Although  a
similarity/dissimilarity measure can be effective without being a
metric [7], it is sometimes preferred. Considering dissimilarity
index I and clusters P1, P2 and P3, metric properties require [2]
[68]:

1. Non-negativity: Id(P1,P2)  0
2. Reflexivity: Id(P1,P2)=0 if and only if P1=P2

3. Symmetry: Id(P1,P2)=Id(P2,P1)
4. Triangular inequality: Id(P1,P2)+Id(P2,P3) Id(P1,P3)

A similarity metric satisfies the following [2]:
1. Limited Range: Is(P1,P2) I0<
2. Reflexivity: Is(P1,P2)= I0 if and only if P1=P2

3. Symmetry: Is(P1,P2)=Is(P2,P1)
4. Triangular inequality:

Is(P1,P2)×Is(P2,P3) Is(P1,P3)×( Is(P1,P2)+Is(P2,P3))

The triangular inequality for a similarity index Is is derived
here according to the corresponding inequality for a
dissimilarity index which is defined as c/Is (c>0). However, other
forms of the inequality are possible by defining other
dissimilarities such as max(Is)-Is. It is trivial to show that if c/Is

(or max(Is)-Is) is a dissimilarity metric, Is is a similarity metric as
well [2]. Hence, metric properties for a similarity index can be
checked for its corresponding dissimilarity [P2].

Cluster size imbalance signifies that a data set can include
clusters with large difference in their sizes. Some researchers
argue that clusters with larger sizes have more importance than
smaller clusters but we assume that each cluster has the same
importance independent of its size. Invariance in the size of
clusters is therefore another desired property of an index. The
size of a data set should not affect the index either [P2].
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An index should be independent of the number of clusters.
Some indices such as Rand index (RI) [58] give higher similarity
when more clusters [68]. An index should also be applicable for
comparing two clusterings with different number of clusters.

Monotonicity is another required property. This property
states that the similarity of two clusterings monotonically
decreases as their difference increases [P2].

Once these desired properties are met, then index values for
different data sets are on the same scale and comparable. For
instance, if an index gives 90% and 70% similarities, 90% should
represent higher similarity. However, this is true only if the
index is independent of the data set and its clustering structure
[P2].

6.2 PAIR-COUNTING INDICES

Pair-counting measures count the pairs of points on which two
clusterings agree or disagree. For instance, if two objects in one
cluster in the first partition are also placed in the same cluster in
the second partition, then this is considered an agreement. Most
existing external validity indices are classified in this group [P2].
Four values are defined: a represents the number of pairs that
are in the same cluster both in P and G; b represents the number
of pairs that are in the same cluster in P but in different clusters
in G; c represents the number of pairs that are in different
clusters in P but in the same cluster in G; d represents the
number of pairs that are in different clusters both in P and G.
Values a and d count agreements while values b and c count
disagreements. Examples of each case are illustrated in Figure
6.1. The values of a, b, c, and d can be calculated from the
contingency table [59] as follows:
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Rand index [58], a well known pair-counting measure, equals
the number of agreements divided by the total number of pairs
of points:
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 For random partitions, the similarity between two
clusterings is desired to be close to zero. However, the expected
value of Rand index for random partitions is 0.5 and the index is
within  a  narrow  range  of  [0.5,  1]  according  to  a  number  of
studies [40] [55] [59]. Hence, a corrected-for-chance version
called adjusted Rand index (ARI) was introduced in [59] which is
upper bounded by one and lower bounded by zero. The
expected value of the Rand index is estimated using the hyper-
geometric distribution assumption in which the size and
number of clusters are fixed [59].

G P

a

b

c
d

a

b

c
d

Figure 6.1: The principle of pair-counting measures.

6.3 INFORMATION-THEORETIC INDICES

Existing information theoretic measures employ the concept of
entropy [60] to compare two partitions. A systematic study of
this group, including several existing popular measures and
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recently proposed measures, has been performed in [66].
Entropy is measured by the average number of bits needed to
store or communicate data. The entropy of clustering P with K
clusters is defined as:

K

i
ii PpPpPH

1

)(log)()( (6.5)

where p(Pi)=ni./N is the estimated probability of the cluster Pi.
With clustering G and the joint distribution p(P,G), the

average number of bits for P is derived by conditional entropy
[53] as follows:
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where the probability p(Pi,Gj) can be estimated from the
contingency table as nij/N.

Mutual information (MI) [54] [66] is derived from conditional
entropy and represents the similarity between two clusterings
[68]. If we choose a random object in the data set, knowing its
cluster in G, mutual information measures the reduction in
uncertainty of the object’s cluster in P [68] [69]. Mutual
information is defined formally as follows:

),()()()|()(),( GPHGHPHGPHPHGPMI (6.7)

In terms of probabilities, it is:
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Variation of Information (VI) [69] is complementary of the
mutual information, see Figure 6.2, and is calculated by
summing up the conditional entropies H(P|G) and H(G|P):
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MI

H(G) H(P)

VI

H(P|G)H(G|P)

Figure 6.2: Mutual information  and variation of information

Both MI and VI are metric but are not bounded to a fixed
range [68]. The mutual information of clusterings P and G is
lower bounded by zero. The geometric or arithmetic mean of
entropies as an upper bound can be an option for normalization
[54] [60] [68], see Table 6.1. In [60], min(H(P),  H(G)) and
max(H(P),  H(G)) are also used for normalization. An upper
bound for VI is H(P)+H(G), which means that clusterings P and
G do not share any information [61]. The upper bound can
therefore be used for the normalization of VI. In [P2], we prove
that under the hyper-geometric distribution assumption and by
using H(P)+H(G) for normalization, the adjusted forms of MI
and VI are equal to their normalized forms:

NMIAMINVIAVI ss (6.10)

where NVIs and AVIs denote the similarity form of NVI and AVI
(1-NVI and 1-AVI) respectively.

6.4 SET MATCHING INDICES

Set-matching based indices are based on pairing similar clusters
in two partitions. Taking use of the tight connection between
partitions and centroids, cluster-level similarity indices employ
representatives of clusters instead of point-level partitions.

Point-level indices consider the intersection of paired clusters in
two clusterings. Examples of point-level set-matching measures
are: Purity [5], F-measure (FM) [62], Criterion H (CH) [63], normalized
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Van Dongen (NVD) [64], centroid similarity measure (CSI)  [P1], and
Pair sets index (PSI) [P2].

Cluster-level indices include Centroid Index (CI)  [P1] and
Centroid Ratio (CR) [65]. They only use cluster prototypes in
contrast to point-level indices which employ the labels of all
objects in resulting partitions.

Set-matching measures involve three design questions:
1. How to measure the similarity of two clusters?
2. How to match the clusters?
3. How to calculate overall similarity?

Normalization and correction for chance (if applied) are also
essential parts of overall similarity derivation. We next study all
these questions including the normalization.

1. Similarity of two clusters
Let Pi and Gj be two clusters in P and G respectively. Most set-
matching measures use |Pi Gj| to calculate the similarity of the
two sets. For example, in Figure 6.4, clusters G1 and P1 are more
similar than G2 and P2 since the number of shared objects is 6
and 4 respectively. Many other ways to measure the similarity
of two sets exist in the literature [70] and any of them can be
employed for calculating the similarity of two clusters. Three
popular measures are Jaccard (J) [71], Sorensen-Dice (SD) [72],
and Braun-Banquet (BB) [70].
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Distance forms of J and SD are defined as (1-J) and (1-SD)
where the former is a true metric but the latter does not satisfy
triangular inequality. To make the measure independent of
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cluster size, these measures normalize the number of shared
objects |Pi Gj| in three different ways [P2].

FM [68] uses precision and recall concepts by measuring nij/ni

and nij/nj respectively. The criterion [2×precision×recall/
(precision+recall)] would be equivalent to SD but avoids
normalization by cluster size using ni×SD instead of SD. PSI uses
BB, and other point-level indices use the number of shared
objects [P2]. Cluster-level indices provide a binary result (0 or 1)
indicating whether the clusters have a 1:1 match (CI), or the pair
of clusters is unstable (CR).

2. Matching
For every cluster, the pair to which the similarity is measured
needs to be found. Three cases are considered: optimal pairing,
greedy pairing, and matching. Matching is performed based on
nearest neighbor mapping so that any cluster in P is matched to
a cluster in G with maximal similarity. Several clusters can be
matched with the same cluster in the other clustering. Pairing is
a special case of matching in which clusters are only allowed to
be matched once.

Matching results, in general, are not symmetric when finding
pairs for clusters of P from G and vice versa. To make the index
symmetric, similarity results in both directions are usually
combined, see NVD, CI, and CSI equations in Table 6.1. FM and
Purity assume the comparison of a clustering with ground truth
and therefore consider matching in one direction only. The
matching criterion in NVD and Purity is the number of shared
objects; CI and CSI are based on the similarity of prototypes.

The pairing problem, however, is not trivial to solve and
different algorithms have been proposed to find approximate or
optimal solutions. Pairing can be seen as a matching problem in
a weighted bipartite graph where nodes represent the clusters,
see Figure 6.3. Greedy pairing is mostly used with the time
complexity of O(N2). The two most similar clusters are
iteratively matched and excluded. CH and CR use greedy
pairing whereas PSI uses optimal pairing by Hungarian
algorithm with time complexity O(N3), where N is the maximum
number of clusters in P and G.
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G

P

4 16
10 10

20 15 25

Figure 6.3: Pairing clusters to maximize overall similarity. The
thick lines show the optimal pairing where the overall similarity
according to number of shared objects would be (25+20+16)=61.

Figure 6.4 demonstrates the matching from G to P based on
the number of shared objects where P2 remains unmatched.
Matching from P to G will be different resulting in (P1,G1),
(P2,G2), and (P3, G3).

G P

G1

G2

G3

P1

P3

P2

Figure 6.4: Matching clusters based on maximum shared objects.
Cluster P2 remains unmatched. In the pairing process of CH, G2

is paired with P2 after excluding G1 and P1 as the first pair.

Figure  6.5  shows  matching  in  CI  when  there  is  different
number of clusters. In matching P to G,  one orphan centroid is
found that indicates one difference in the global allocation of the
clusters. In comparing two clusterings with different numbers of
clusters, unpaired clusters indicate a disagreement in the
number of clusters, which is an advantage of pairing.



Mohammad Rezaei: Clustering Validation

42 Dissertation in Forestry and Natural Sciences No 225

G P
G1

G2

G3

P1

P2

orphan

Figure 6.5: Matching centroids from P to G based on nearest
neighbor mapping used in CI and CSI; one orphan centroid
shows one difference in global allocation.

3. Overall similarity
Overall similarity is obtained by summing up the similarities of
all the matched clusters. The upper bound of overall similarity
for  CH  is N (total  number  of  objects)  which  is  used  for
normalization, see Table 6.1. To remove the asymmetric effect of
matching,  NVD and CSI use 2N because of two-way matching,
see  Table  6.1.  In  [P2],  we  show that  CSI,  Purity,  NVD,  and CH
are all equivalent if their matching results are the same.

The overall dissimilarity of CI equals the number of zero
mapped centroids of G.  In  Figure  6.6,  the  blue  prototypes  are
mapped to the red prototypes from another solution according
to minimum Euclidean distance. There is no mapping to two of
the red prototypes, which results in CI=2. Since CI is not
symmetric, CI2 is  defined  as  max(CI(P,G), CI(G,P)) [P1].
Centroid index represents the number of differences in global
allocations and is in the range of [0, K-1], where K is  the
maximum number of clusters in the two clusterings. At least one
non-zero mapped centroid exists, therefore the upper bound
becomes K-1.
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Figure 6.6: Two sets of prototypes and their mappings are
shown. There are two orphans resulting in the index value of
CI=2.

Centroid ratio (CR) defines the concept of (un)stable
centroids. Consider a paired centroid Ci and C’j with distance Dij

from clusterings P and G, respectively. Assume that the
distances of Ci to the nearest centroid in P, and C’j to the nearest
centroid in G, are Di and Dj. Then, if Dij2/(Di×Dj)>1, the pair is
considered unstable. The overall similarity is defined based on
the number of unstable pairs [65], see Table 6.1.

In  [P2], we propose pair sets index that is the only set-
matching based index that applies correction for chance. We
show that the simplified variant of PSI holds all the
requirements to be a metric.

6.5 EXPERIMENTAL SETUP FOR EVALUATION

Partitions from real data sets provide only limited variations,
whereas a variety of partitions with different data sizes, cluster
sizes, and number of clusters should be used to provide a valid
evaluation of the performance of an external index. In [P2], we
introduce a new arrangement for experiments based on
artificially generated partitions to investigate the properties of
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external indices. First, we introduce the process of generating
partitions, and then, we provide two examples that show the
behavior of several external indices in two aspects: random
partitions and monotonicity.

Consider a ground-truth partition G with 3,000 objects and
1,000 objects in each cluster, see Figure 6.7, where light grey,
grey, and black represent the three clusters. In practice, we make
an array of the length 3,000 objects with values 1, 2, and 3
representing cluster labels of data. In this case, the first 1,000
objects (light grey) have value 1. The partition P to be compared
with is varied in different ways. The order of the data objects in
the two partitions remains the same.

1 1000 2000 3000G

1 700 2000 3000P

Figure 6.7: Two partitions with 3,000 objects.

Two partitions can be built in different ways to examine the
properties of an external index with respect to different aspects.

1. Random partitions
Consider a partition P which consists of random labels as shown
in Figure 6.8. Experiments are conducted for different numbers
of clusters from K=1 to 20 in P. The indices NMI, ARI, and PSI
give values close to zero independent of the number of clusters.
The values of the other three indices are not zero because they
are not corrected for chance, see Figure 6.9. Normalized mutual
information gives zero in this case which shows that NMI has
the same performance as the adjusted mutual information. This
result further verifies the claim made in (6.10).

1000 2000 3000G

P

Figure 6.8: Clustering P is a random partition with two clusters.
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Figure 6.9: Random partitioning with different numbers of
clusters in P from K=1 to 20

2. Monotonicity
The first (light grey) cluster in P is enlarged in steps of 50 objects
until only one cluster remains, see Figure 6.10. In Figure 6.11,
NMI, ARI, and NVD have very clear knee points when the light
grey cluster reaches 2,000 objects because, at this point, the
number of clusters decreases by 1. For NMI and ARI, the index
values increase when the cluster size approaches 2,000. In this
situation, there are still three clusters and the results indicate
that NMI and ARI ignore relatively small clusters and weigh
large clusters more. When the size of the light grey cluster is
passing from 2,000, there is a local maximum as the number of
clusters changes from three to two. NVD is constant between
1,500 to 2,000, and 2,500 to 3,000. The asymmetric matching of
clusters in NVD causes the problem. Suppose that the size of the
grey cluster (x) in P is less than 500. The number of shared
objects is 1,000+x+1,000 in matching P to G. In matching G to P,
both light grey and grey clusters in G are matched with the light
grey cluster in P, resulting the number of shared objects
1,000+(1,000-x)+1,000. Summing up, the number of shared
objects in two directions is independent of x and equal to 5,000.
Therefore, when the size of the first cluster is between 1,500 and
2,000, the similarity remains a constant 5,000/6,000=0.83.
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1000 2000 3000G

1250 2000 3000  P1

2000 3000 P2

2500 3000 P3

3000 P4

Figure 6.10: Enlarging the first (light grey) cluster in steps of 50
objects by moving the objects from the other two clusters

Figure 6.11: Increasing the size of the first cluster until it
contains all data objects

6.6 SOLVING THE NUMBER OF CLUSTERS

External indices have been used for determining the number of
clusters [4] [41] [73] [74] [75] [76] [77]. The idea is to generate
randomness in the process by resampling the data, cluster the
subsamples with a varying number of clusters, and then
measure the stability with the presence of the randomness [74].
Stability is measured by comparing clusterings in the resamples
using an external index. All existing methods under different
nomenclature such as cross-validation [78], replication [77] [79],
resampling [4] [74] [80] and prediction [73] [81], evaluate the
stability of clustering results.
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The idea is demonstrated in Figure 6.12. Centroid-based
clustering is applied to the data set with five clusters and its
subset for k=5 and k=8. The clustering results of the data set and
the subset are similar when k=5, whereas there are
disagreements when k=8. There are pairs of objects that are in
the same cluster in the data set but in different clusters in the
subset.

Disagreement

Figure 6.12: Stability-based method for finding the number of
clusters. Stable (left) and unstable (right) results are produced
when the correct and incorrect number of clusters are applied.

Stability, however, can be achieved with fewer clusters if the
positioning of the clusters is not symmetric [82]. Figure 6.13
demonstrates two data sets with three well-separated clusters,
first with a symmetric (left), and second with a non-symmetric
(right) positioning of clusters. Applying clustering for k=2 gives
stable results for the first data set and unstable results for the
second data set. The second data set is also stable for k=3, which
is the correct number of clusters. Therefore, it is better to select
the highest number of clusters that leads to a stable result.

Data set Subset Data set Subset

Figure 6.13: Unstable results for symmetrically and stable results
for non-symmetrically positioned clusters when the incorrect
number of clusters k=2 is applied.
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The stability-based method includes four main design
choices:

1. Adding randomness
2. Cross-validation strategy
3. Selection of the external index
4. Selection of the clustering method

Randomness is typically created by sub-sampling. The size
and number of subsamples are parameters. Another approach is
to use a randomized algorithm [83]. However, an inconsistent
clustering algorithm such as k-means is completely unreliable
and should not be used, but randomizing another more stable
algorithm could be used. Adding noise has also been used to
provide randomness in the data [84], [85]. A noise vector with
random orientation can be generated but its magnitude depends
on data and is not trivial to set. In the case of categorical data,
adding noise can become complicated. Changing just one
attribute randomly may result in an impossible combination of
the attributes.

Most external indices are restricted to compare partitions of
the same data exactly. A straightforward approach [41] [42] [74]
compares clustering results to the result of the full set, but
restricting only to the points that are in the subset. Another
approach predicts the missing partition labels by nearest
neighbor mapping using cluster centroids, or by applying a
more complicated classifier process [73] [78] [80] [86]. We will
also consider comparing the subsets directly by using centroid
index [P1], which does not require the partition of the data.

The third design choice is the selection of an external validity
index. We show by experiments in [P3] that the exact choice of
the measure is not important, but how it is applied matters. All
existing stability-based methods select the number of clusters
that provide maximum stability, but simple counter-examples
show how it will fail. We therefore introduce an alternative
hypothesis that several numbers of clusters can provide stable
results, and choosing the maximum number of clusters among
these is more reliable.
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The last design choice is the selection of a clustering
algorithm. K-means is commonly chosen but it is highly
unstable itself and not useful. Another more robust algorithm,
such as agglomerative clustering [87], random swap [25] or
genetic algorithm [57], should be used instead. However, the
main question is not which algorithm but rather which cluster
model (cost function). If we apply squared error criterion but
the data is not spherical, a clustering may be resulted that does
not fit the data. Nevertheless, we should still be able to find the
number of clusters that best fits to this model.

The baseline variant of cross validation using the sub-
sampling strategy is outlined in Figure 6.14.

Cross validation (CV) Iterating the process

Subsampling

Data set Subset

Clustering Clustering

Cluster
Validity

Validity value
[0, 1]

Subset 1

Subset 2

Subset P

Data set

CV

CV

CV

Analysis Stability value
[0, 1]

...

...

...

Figure 6.14: Cross-validation technique; clustering of a full data
set is compared with the clustering of its subset (left). The
process is repeated for a number of subsets (right).

The cross-validation approach is repeated by applying
clustering with all potential numbers of clusters k [kmin, kmax].
We denote the mean value of the validity index for k clusters as
Ik.  Maximum stability approach uses this mean value as such to
indicate the correct number of clusters:

k
kIK )max(arg (6.14)

The normalized maximum stability approach selects the number
of clusters as the maximum difference in mean stability values
of  the  data  (I)  and  the  corresponding  value  (I0)  of  the  null
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reference, which is a random data set drawn from the original
data [41] [73]:

k
kk IIK )max(arg 0 (6.15)

This approach is referred to as normalization with regard to
the number of clusters [83]. The reason is that the stability value
depends on k regardless of the underlying data structure. For
example, the stability of clustering for a random uniform data
set decreases as the number of clusters increases. This bias
should be removed, and then the same equation (6.14) should be
used.

In  [P3], we consider last local maximum as  a  new  criterion,
which provides better results. For this, a threshold (Ith)  is  set  to
decide how high of an index value is considered stable. The
selection becomes:

k
thk IIkK )max(arg (6.16)

Resampling techniques have been used in supervised
learning to improve prediction accuracy, where the main idea is
that small changes in the training data will yield the same stable
classifier without any significant change in accuracy. The same
idea has been applied for estimating the number of clusters in a
data set [80]. Part of the data is considered for training a
classifier and the rest of the data for test. Two different labeling
are derived for the test data: one from the classifier and the
other by applying clustering. The two resulting partitions are
compared using an external index, see Figure 6.15.

Figure 6.16 shows the results of cross-validation and
classification-based approaches with and without normalization
for the data set in Figure 6.12. The highest stability is found with
k=5, the correct number of clusters.
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Classification-based approach (CB)

Subsampling

Data set

Training subset Test subset

Clustering

Training

Clustering

Classifier Cluster
Validity

Validity value
[0, 1]

Model

Labels Labels

Labels

Iterating the process

Data set

CB

CB

CB

Analysis

Stability value
[0, 1]

...

...

Figure 6.15: Classification-based approach (left), and iterating
the process for several train and test sets (right).

Figure 6.16. Example of stability-based method for the data set
in Figure 6.12. 100 subsets are used in the cross-validation
approach, each 20% of the full data set. The sizes of train and
test sets in the classification-based approach are 80% and 20%.
Random swap algorithm is used for clustering [25] and adjusted
Rand index for validation [59].
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7 Summary of contributions

This chapter summarizes the contributions of the five
publications. Publications [P1]  to  [P4] concerns cluster validity,
and publication [P5] proposes a semantic similarity measure for
comparing groups of words.

In  [P1], we propose a new cluster-level external validity
index, which measures the global allocation of clusters instead
of point-level differences in partitions. The proposed centroid
index (CI) uses the representatives of the clusters to compare
two clusterings, therefore it can be computed fast in O(K2) time.
It is simple to implement, and has clear intuitive interpretations.
Values CI>0 indicate how many clusters are differently allocated.
Point-level extension of CI is also introduced. It belongs to the
class of set matching-based indices. Experiments show that CI is
capable of recognizing structural similarity of clusterings, even
for high dimensional data. The results are also promising for
solving the number of clusters based on measuring the stability
of clusterings.

In  [P2], we provide a systematic study of existing set
matching-based external validity indices by analyzing three
design questions: matching clusters, similarity of two clusters,
and overall similarity. We show that how CSI, NVD, CH and
purity are equivalent if the matching of clusters is the same. We
study correction for chance, and prove that normalized mutual
information and variation of information are intrinsically
corrected for chance. We propose a new set matching based
index called Pair Sets Index (PSI), which outperforms popular
existing external indices. A novel setup for experiments is
introduced based on synthetic data, which allows systematic
evaluation of an external index for clusterings of different data
sizes, cluster sizes, and numbers of clusters.

In  [P3], we analyze the stability-based approach for
determining the number of clusters. The goal is to find out
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whether stability-based method can be used for determining the
number of clusters. The simple answer is that, yes, it is possible,
but we think it is not practical. If it is going to be used, we give
the following recommendations how to construct the method.
The exact choice of the cross-validation strategy and external
index is not critical. Unstable clustering algorithms like k-means
should not be used. Using the last local maximum criterion
provides much better results than the global maximum criterion.
Even if we demonstrated the approach working successfully for
several data sets, we do not recommend it. External indices
simply do not offer anything more that the best internal indices
cannot offer, and they would just add unnecessary
complications into the system.

In  [P4], we propose a validity index for determining the
number  of  clusters  in  a  group  of  English  words.  We  define
compactness and separation between clusters, and the validity
index as the ratio of compactness/separation. The experiments
on a real data set show that the number of clusters calculated
using the proposed index has a 2% error comparing to human
judgment. The index uses only the similarity between two data
objects, and therefore, is suitable for any type data.

In  [P5], we propose a semantic similarity measure for
comparing two groups of words. The measure is used for
keyword-based clustering, where the objects such as documents,
websites, and movies are represented by their keywords. We
use Wu & Palmer index, a WordNet based measure, for
comparing every two words.  The proposed index is based on
matching the words in two groups. A comparative evaluation
with a real data set shows that the index avoids the limitations
of traditional measures such as minimum or average similarity.
The index can be used not only for comparing groups of words
but for groups of any type of data, when the similarity between
every two data objects is available.
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8 Conclusions

The absence of prior information in cluster analysis makes it
more challenging than supervised classification. The goal of
cluster analysis is to reveal the underlying structure of the data
rather than establishing classification rules. Cluster analysis
contains a set of components including proximity measure, cost
function, clustering algorithm, and cluster validity. Every
component is closely related to the other components.
Therefore, to analyze one component, knowledge of the other
components and their effects is necessary. Given the same data
set, different proximity measures, cost functions, and clustering
algorithms usually result in different partitions.

This thesis reviews different components in cluster analysis,
concentrated on cluster validity. Several novelties are presented
such as proposing an internal index for determining the number
of  clusters  in  clustering  of  a  group  of  words,  introducing  a
cluster-level external validity index, proposing a point-level
external validity index, providing an analysis of external indices
and their properties, a novel setup of experiments for evaluating
external indices, proposing a similarity measure for the
comparison of two groups of words, and analysis of stability-
based method for determining the number of clusters.

Though we have already seen many examples of successful
applications of cluster analysis, many open problems still
remain due to the existence of many inherent, uncertain factors.
Our future research will entail:

CI is limited to data for which centroid can be calculated.
We can remove this dependency as long as the cluster
similarity can be measured. This can be done point-wise
but the overall idea of measuring the differences by the
number of mismatch clusters is worth to try.
Keyword clustering can be applied to clustering
documents, for instance, web pages.
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Although we do not recommend the stability-based
method for solving the number of clusters, we can use it
for measuring stability of different algorithms and cost
functions.
Studying the cost functions and their properties should
also be done. Analyzing what the different link and cut-
based clustering methods actually optimize would reveal
further insight.
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